
Software Engineering Laboratory Projects and Guides

Version 1.0

Coding Style

General Comments: The following requirements are the minimum

required to ensure correct coding style for support and maintenance.

These guidelines have been adapted from a coding style guide authored
by Prof. Karen Davis, University of CIncinnati.

1. Identifiers
Identifiers shall be descriptive of their purpose or content. Single letter or non-meaningful names are not

acceptable. Use correct English spelling, do not haphazardly eliminate vowels. Use abbreviations or

acronyms only if they are commonly known.

2. Named Constants
Named constants shall be used rather than literal constants.

3. Modularity
The code shall be written in a modular style. Each module should have only one well-defined task.

4. Variable References
No non-local references to variables shall be made. Variables used in a module are either local or are

parameters.

5. Data Abstraction
Good data abstraction shall be employed. The only access to an abstract data type shall be through the

procedures or functions that define the behavior of the abstract data type.

6. Partitioning
A complete program shall be partitioned into one or more modules each of which are represented as

source code in a separate named file. Each module shall have a module description written as comments

at its beginning. The main or root module shall also contain the program code documentation written as

comments at the beginning of the file before the module description.

6.1. Program Code Documentation
The format of the program code documentation is:

Purpose: A brief statement of the purpose of the program

Invocation

Syntax:

The specific command syntax for executing the program and

definition of each command line option.

Description: A description of what the program does.

Copyright: A statement of the copyright including limitations and owner.

Notes: Any additional notes about the program.

6.2. Module Description
The format of the module description is:

Module name: Name of the module.

Pupose: Brief purpose of the module relative to the program as a

whole.

Calling syntax: The specific calling syntax of the module in the form

proc(a,b,c,...) return x where return x

applies only to functions.

Inputs: List of procedure inputs and their definitions.

Outputs: List of prodedure outputs and their definitions.

Files used: List and definition of files read and/or written.

Description: A brief and complete description of the module. If module

implements a published algorithm, give reference.

Author: Name of primary author of the module.

Date: Date of last update to the module.

Revisions: List of revision descriptions with latest revision first.

Note that both program and module descriptions are a high-level description of what task the

code accomplishes. It should not mention data structures, program modules, or variables. It should be

understandable by an intelligent non-programmer.

Correct spelling and punctuation shall be used in all textual descriptions including comments written

throughout the code.

The description of program input and output contains the source/destination of all input and output, as

well as the formats used for each. BNF may be used for describing formats. A brief example of input

and output is often useful.

7. Indention
Adequate use of whitespace shall be employed for indentation and separation of modules. Four spaces

for indentation is suggested, and uniform spacing to indicate levels of control flow is required.

8. Line Length
Long lines shall be broken and indented so that they may be easily read on a screen (no longer than 80

characters).

9. File Protection
Unless several students are working on a module, the files containing the module sources shall be set so

that no one but the individual programmer may have access to it. For example chmod 600 filename

gives read/write access to you and not the rest of the world under UNIX.

